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S T R E A M W I S E  V O R T I C E S  IN A X I S Y M M E T R I C  J E T S  

N. M. Terekhova UDC 532.526 

The ideas and methods of hydrodynamic stability have proven rather fruitful for understanding of the 
regular features of the initial stages of transition from the laminar flow regime to the turbulent regime. In 
Batchelor's figurative words, it is minor reasons that lead to irreversible consequences in hydrodynamics, and 
hydrodynamic stability reveals weak vulnerable points in flow where random irregularities develop into typical 
processes of turbulent regimes. 

Much attention has been traditionally concentrated on large-scale oscillations, namely, traveling waves, 
which are generally called the Tollmien-Schlic~ating waves in near-wall flows or the Rayleigh or Kelvin- 
Helmholtz waves in free shear flows. 

However, streamwise vortex structures have been intensely studied in recent years. Such quasi- 
stationary waves often arise in flows both under the action of active external forces and in situations where 
the main flow is essentially three-dimensional. The vortices can be responsible for new transition scenarios, 
which are different from those previously studied, and enhance the growth of traveling waves on the local 
bent mean profiles created by them. 

Such studies has been most successful for near-wall flows. The possibilities of the origin and development 
of streamwise, vortex, quasi-stationary instability in free shear layers (jet mixing layers) have been poorly 
studied. Recently a number of papers [1-3] have been published in which such unstable oscillations are 
considered for plane mixing layers. 

The papers describing the characteristics, structure, and spectral composition of asimuthal irregularities 
for supersonic nonisobaric axisymmetric jets [4-9] are important in this respect. It has been found that a series 
of singularities created in free axisymmetric flow by a system of s*~reamwise vortices can be described within 
the framework of the existence in it of unsteady disturbances of the Taylor-GSrtler vortex type. Their origin 
is associated with the curvature of the gas motion trajectories under the action of centrifugal forces ,~ u2/Ro. 
Exiting from the nozzle, the gas in the compressed layer of the jet from the barrel shock (BS) to the outer 
jet boundary flows around the curvilinear BS boundary and is decelerated in the mixing layer. High-speed 
particles in the internal regions and low-speed particles in the boundary regions are affected by different 
centrifugal forces, which leads to additional radial azimuthal overflow of the gas. Such displacements form a 
system of counterrotating vortices constituting vortex pairs. 

Analysis of schlieren photographs of jets presented in a number of papers (see, for instance, [10]) shows, 
however, that longitudinal bands identified commonly with vortices are also observed for jet regimes with very 
small nozzle pressure ratios and even for isobaric (optimum) jets. Such bands are typical of overexpanded 
jets as well. This suggests that low-intensity streamwise vortices can occur initially in free jet flows, and the 
nozzle pressure ratio increase, which leads to growth in the curvature l/R0, only intensifies them. 

The present paper describes a systematic study of the characteristics and structure of quasi-stationary 
vortex disturbances in axisyrnmetric jet flow. The simulation is carried out on the basis of numerical integration 
of the linearized equations of motion for an inviscid compressible nonheat-conducting gas. 

The flow pattern is shown in Fig. 1, where r, ~, and z are cylindrical variables, v ~, w', and u ~ are the 
corresponding disturbance velocity components, rl and r2 are the radial coordinates of the inner and outer 
boundaries of the mixing layer 6, and R0 is the radius of the jet boundary curvature, which determines the 
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active centrifugal forces. With increasing R0, the flow boundaries flatten out, and in the limit R0 ---* oo the 
cellular structure typical of underexpanded jets with nozzle pressure ratios N > 1 is replaced by jet exhaust 
on the isobaric regime N = 1. 

The equations are nondimensionalized to U0 and p0 (at the inner boundary for r = r l )  and to the value 
of ~0 for which U]U0 = 0.5. For an isobaric jet, f0 coincides with the nozzle radius, and generally rl  = 1 - 6/2 
and r2 >~ 1 + ~/2. One-dimensional mean flow has the following representation for the axial velocity: 

U( r )  = { 1, r < rl ,  
exp(-br/2), r ~> rl .  (1) 

Here 7/ = 2 ( r -  rl)/6, b = ln2, and U' (r) = -4bTlU/6. The mean density p0 is related to U through the 
gasdynamic relation 

Po = [1 -{- (ae - I) M 2 (1 - U2)/2] - ' ,  (2) 

and the speed of sound a = (p0M20) -1/2 (M0 is the Mach number at the nozzle exit). 
The equations of motion with active centrifugal forces for axisymmetric flow (Fig. 1) were derived in 

[4]. Let us define the vortex disturbances as 

Vt, ltt, pt, pt = (i~), 3,/3, p) (r) e iO cos n~p, . w t = iu) (r) e iO sin/z~, 0 = ~x -- tot, (3) 

where p' and p' are the density and pressure disturbances; w is the angular frequency; a = ~ + in';  a ~ and 
n are the longitudinal and azimuthal wavenumbers; and a i is the longitudinal wave amplification factor. The 
value of n defines the number of vortex pairs along the circle of the flow field: small n correspond to large-scale 
vortices and large n, to small-scale ones. 

The linearized equations for the pressure disturbance amplitude/3 are written as 

/3" + A1/3' +A2/3 = -{[1 + aU/F+A3] fa' +[(1 /Ro+U' /U+A,  +A3) 2aU/F - ( A 2 + a  2) B / F  2]/3}/R0, 

( ' ) = d / d r ,  F = a V - w ,  F I = F 2 - B / R o ,  B = 2 U ( U ' + U / R o ) ,  (4) 

A l = l / r - p ~ 0 / P 0 - 2 F ' / f ,  A2= F2/a 2 - n 2 / r  2 - a  2, A 3 = ( B ' - 2 B F ' / F ) / F 1 ,  [/31ra~= l 

with the boundary conditions/3 --+ 0 outside ~ for r < rl  and r > r2 [4, 6]. Additional terms associated with 
centrifugal forces are written on the right-hand side of (4). The amplitude functions of disturbances are found 
from the system 

5 = (F/3 ~ + 2aV/3/Ro)/poF1, ~ = -n/3/rpoF, fi = - [ (V '  + U/Ro)/3' + aF/3]/poF1, [~ =/3/a 2 - p'ofi/F. (5) 

The real parts of Eqs. (3) and (5) define the physical components of wave velocities and density: 

I v (r) exp ( - s i x )  cos n~, v _fir sin 01 ~3 i cos 01, 
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u'  = , ,  ( r )  e x p  c o s  u - -  c o s  01 - s i n  0 , ,  0 ,  = R e  ( e ) .  

Disturbances with w -* 0 are considered, which corresponds to a small value of the acoustic Strouhal number 
(or Helmholtz number) Sr = 0.005, the time period of the wave being Tt ~ 250. 

Figure 2 shows the eigenvalues of a~ and a i within a wide range of R0 (5 ~< R0 ~< 3.104) for several 
regimes with mixing layer thickness 6 -- 0.2. The basic regime is the one with M0=1.5 for the azimuthal mode 
n -- 16 (curve 1). 

We now consider sequentially the results of numerical simulation of this regime with respect to R0 
value variation. 

Limiting Large Values of R0 (R0 > 104). In the limit R0 -* oo, this case can be correlated with 
the isobaric flow regime in which no trajectory curvature is observed. It is seen from Fig. 2 that the values 
of increments of a i are rather small and decrease only slightly with growing ]7o. The wavenumbers a r of 
disturbances are thereat nearly constant (a  r ,-, 0.0375), which corresponds to wavelengths A ~-, 170~0, and 
the phase velocities c = w/a r are constant (c ,,~ 0.67) for all 6 under consideration. Figure 3 (curve 1) 
illustrates this fact for R0 = 2 �9 104. This weak variation of the disturbance parameters suggests that such 
quasi-stationary waves are typical of a free isobaric axisymmetric jet for M0= 1.5. Because of the inviscid 
nature of the governing equations (4) we have to restrict consideration only to these limiting cases, since 
further increase in /70 accompanied by reduction of a i is not possible, because of errors arising in regions 
U ,-, 0. 

We consider the vector field of velocities v I and w I for various values of 6. Such configurations give an 
idea of the shape of streamwise vortices in various downstream x cross-sections. In what follows, we shall not 
specify the dependence x (6), assuming the thickness 6 to be a scale parameter. The radial distributions of 
wave velocities for R0 = 2 �9 104 are presented in Figs. 4a-4c for 6 = 0.05, 0.1, 0.125, and 0.15 (curves 1-4, 
respectively). They were computed on the basis of (4). The values of v' and w' make it possible to present 
the sequence of downstream changes of vortex configurations. Only one vortex in the interval 0 ~< n~ ~< 7r 
is shown in Fig. 4d. The second vortex of this pair in the inte~"~l ~r ~< n~ ~< 2~r is symmetric to the vortex 
shown in the figure and is counterrotating. Figure 4e shows the downstream evolution of a vortex pair for the 
mode n = 16. 

For small 6 values, a vortex pair with an approximately equal ratio of azimuthal and radial motion 
is formed near the nozzle exit in the near-root region. The center of the vortex is close to the coordinate 
[U']m=x. Advection swirls the vortices in this pair so that the right- and left-rotating vortices, in overlapping, 
change places to form a vortex core. The azimuthal overflow is enhanced, and the radial overflow decreases 
considerably. Further downstream the vortex orientation does not change. 

This dynamics is observed for all disturbances for R0 > 104. The dashed curves in Figs. 4a-4c show 
the velocity distributions for R0 -- 27300. It is seen that a further increase in the radius R0 has practically no 
effect on the wave velocity shape or values. Variations in the streamwise component u completely correlate 
with variations in the radial velocity v direction. Positive values of v (overflow from the vortex core to the 
flow periphery) are accompanied by the mass entrainment of high-speed gas and correspond to positive values 
of u, while a change in the radial motion direction (introduction of low-velocity mass from external regions) 
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is accompanied by the appearance of negative u and an appreciable relative decrease in the positive values. 
It was found that with increasing R0 within the range of these limiting values, the swirl step of the 

vortex core is reduced, i.e., swirling is shifted closer to the jet root to the region of very small ~i. We were 
unable to study the range of ~ > 0.25 in all variants. Such core formation in vortex pairs is typical of very large 
R0 and is determined by shear forces (mean motion gradients) that form the profile. Increasing centrifugal 
forces lead to a change of disturbed motion shape. 

Large Values of R0 (200 < R0 < 104). Let as consider in more detail the variant of R0 = 5 �9 103, for 
which the region of 0.05 ~< ~ ~ 0.65 was calculated. The longitudinal increments are still small (see Fig. 2); 
their downstream variation and longitudinal wavenumber values (~r are shown in Fig. 5. As the jet propagates 
downstream, the increments a i are reduced, which is typical of all regimes, whereas the values of a r are fairly 
stable. 

Vortex configurations for various ~ are shown in Figs. 6a-6c (curves 1-6 represent ~ = 0.1, 0.2, 0.3, 
0.4, 0.5, and 0.6, respectively). The vortex shape and orientation in the near-root region (* < 0.15) are the 
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same as for the limiting R0, but downstream core formation is replaced by expulsion of the initial vortex 
into the external region. The expulsion results in the formation of another vortex in the high-velocity region. 
This vortex is counterrotating with respect to the initiM one, and a vortex pair exists in the crossflow region 
of the mixing layer. The phase velocity of the wave decreases thereat, as is seen from Fig. 3 (curve 2). The 
downstream jet propagation leads to complete deceleration and vanishing of the initial vortex, and the second 
vortex dominates in the interval 0.3 ~< 6 ~< 0.45. The process is then repeated: another counterrotating vortex 
arises in the internal region, and at ~ > 0.45 a vortex pair is again observed. The mean gradients in this region 
are not high ([U'[m~ "~ 2.5), and no expulsion occurs. The center of the already existing vortex occupies a 
position near r --~ 0.95, whereas the center of the second vortex is shifted toward it from internal regions. The 
phase velocity of the wave starts to increase (see Fig. 3). 

The crossflow distributions of the axial velocity u reflect the reconstruction of the vortex pattern, which 
is accompanied by a reduction of the level of u > 0 at high r, by the appearance of regions of negative axial 
velocities, and, finally, by establishment of distributions with three local maxima for large ~ (Fig. 6d). 

As the centrifugal forces increase, at least up to R0 > 200, no qualitative changes in the vortex 
configurations take place. One can only note an increase in the region of existence of the initial single vortex. 
Thus, for R0 = 5- 103 this region is bounded by 6 ,-~ 0.15, whereas for R0 = 0.5.103 the interval is extended 
up to 6 ,-~ 0.35 and for R0 = 0.2.103 up to 6 ,,~ 0.5. 

Moderate Values of  Ro. For 50 <~ R0 ~< 200, one can again note vortex-core formation in the region of 
small 6, as in the above-described cases. This is illustrated in Fig. 7 for 6 = 0.1, 0.16, 0.18, and 0.2 (curves 
1--4) at R0 = 50. In the initial vortex, whose center is in the region of low flow velocities (U ,-~ 0.01) outside 
the conventional outer boundary of the mixing layer r2, downstream jet propagation leads to change of the 
sign of the radial component v, which should be interpreted as the onset of core formation in the pair in the 
interval 0 ~< n~ ~< 27r. For/~ > 0.2, the entire crossflow region of the mixing layer is occupied by a single 
vortex, which is counterrotating with respect to the near-root vortex. The values of ,J and w are of the same 
order there, and the center of this second vortex is close to the middle of the mixing layer and is shifted toward 
the outer boundary during downstream jet propagation. Note that though the maximum values of v, w, and u 
are within the mixing layer, the radial and azimuthal components outside the layer ~ decay asymptotically, 
propagating rather deeply both in the flooded near-jet space and in the region adjacent to the inner boundary 
of the mixing layer. The longitudinal component u is absent in this region. The phase velocity of the wave for 
R0 = 50 is shown by curve 3 in Fig. 3; its reduction with growth in ~ is observed. The increments of a i for 
such moderate R0 increase by an order of magnitude compared with the values for high R0. 

Evidently, for R0 < 50, the governing forces will be centrifugal forces. Precisely for such R0 one can 
regard the streamwise vortex disturbances as Taylor-GSrtler waves. 

Small  Values of R0. Taylor-G6rtler Waves. The longitudinal increments of a i increase considerably for 
disturbances for R0 < 50 (see Fig. 2). Precisely these R0 values are observed in nonisobaric underexpanded 
jets at N > 1. The features of Taylor-GSrtler waves have been thoroughly studied by Zheltukhin et al. [4-7]. 

It was found that an increase in centrifugal forces (reduction in R0) leads to vortex localization in 
the mixing layer for small Ro compared with its moderate values, and the downstream dynamics involves 
gradual expulsion of the vortex into the external region, the process being attenuated by R0 reduction. It 
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seems reasonable to discuss typical distributions of the wave velocities v, w, u, and @0 for R0 = 20 and 5. 
The downstream reconstruction of the vortex pattern for R0 = 20 (Fig. 8) shows that in the initial near- 

root vortex with the same order of v and w the radial component is considerably reduced and the azimuthal 
one increases. Thus, gas particles in the external regions begin to move along nearly circular trajectories as 
if they flow around the second counterrotating vortex that has originated near the inner boundaries with 
considerable radial motion. The center of the second vortex is gradually shifted from the inner boundaries to 
the center of the layer 6 and then to the outer boundary. Curves 1-4 correspond to 6 = 0.1, 0.2, 0.3, and 0.35. 

The crossflow distributions of lu[ acquire a typical shape with two peaks. As 6 increases, the first peak 
shifts to the region of large r and decreases, while the value of the second peak increases in the region r ,-~ 1. 
The appearance of these typical distributions of the axial component leads to qualitative reconstruction of 
the crossflow distributions of the total pressure variations ~p0, which are described by the following relation 
[4, 6] with accuracy up to quadratic terms: 

6po = po [Ce~ l p' + ~- )  zeM2 P~] M U 
pj 2 + (ze - 1) M 2 + ' = --'a 

Special attention should be paid to the character of the @0 distributions, because this quantity has been 
measured in experiments [5, 8, 9] and compared with computations. The character of @0 evolution determines 
the axial increments of a ' ,  and therefore, ignoring these features can give rise to high errors in a i values. It 
is also important to determine the value of R0 very accurately. Equation (4) used for simulation is obtained 
under the assumption of the local constancy of R0, and in further research one should try to take into account 
the dependence R0 (z) or R0 (8), which could be done by direct numerical integration of linearized equations 
of motion by finite-difference methods. 

In the present paper, the author made no attempt at criterial description of the acting forces by means 
of GSrtler or Richardson numbers, since this would only hamper understanding, because of the absence of a 
clear notion of the dependences on some easily representable quantities. 

For R0 = 5, distributions could be obtained only for ~ < 0.33; they are shown in Fig. 9 for ~ = 0.1-0.3 
(curves 1-3). For these values of 6, a single vortex is formed in the mixing layer, and its center is gradually 
shifted from the middle of the layer (r ~ 1) toward the outer boundary. The ratios of v and w are approximately 
equal there; both components grow downstream, just as the axial component u. The maximum of lul shifts 
from the middle of the layer to the outer boundary, and again a considerable change in @0 in the cross- 
section is observed, although there are no sharp changes in @0 for this configuration, which is simpler than 
the configuration for R0 = 20. 

The overall intensity of the transverse azimuthal overflow increases. Thus, the ratios v/u and w/u vary 
from 0.088 for 8 = 0.1 to 0.122 for 6 = 0.3. The phase velocity for R0 = 20 corresponds to curve 4, and 
for R0 = 5, to curve 5 in Fig. 3. Until now we discussed only the shape and values of the wave velocities of 
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disturbances; therefore, it seems reasonable to give crossflow distributions of the wave density. They are shown 
in Figs. 10 and 11 for R0 = 20 and 5, respectively, for rtqo = 0 (the notation is the same as in Figs. 8 and 9). On 
the whole, these distributions correlate well with the character of u. Thus, the addition of low-speed mass with 
moderate mean density from external regions corresponds to p < 0 and leads to reduction in the mean local 
values. The mass entrainment from internal regions corresponds to p > 0 and hence is responsible for their 
increase. The maximum of p in p (r) distributions is displaced to higher mean flow velocities, as compared 
with localization of [ulm~x. 

Other Spectral Modes. Vortex shapes for modes n = 8 and 24 are quite well studied. Figure 2 shows 
the increments of these modes for the same calculation parameters (M0=1.5 and 6 = 0.2, curves 4 and 5, 
respectively). They support the regularity that was already noted in [4, 6], namely, small-scale waves with 
large azimuthal numbers are more unstable. 

Examination of the evolution of the vortex disturbances shows that it agrees well with the stages 
described in detail for mode n = 16. Therefore, without going into details, we note some distinctive features 
and general tendencies found in such comparative analysis for small R0 at large values of centrifugal forces 
(R0 < 50). 

(1) In the near-root region for small 6, an increase in the mode number is accompanied by more 
expressed vortex localization in the mixing layer. For R0 = 5 and 6 = 0.15, its center is determined by the 
coordinate r = 1.09, 1.06, and 1.03 for n = 8, 16, and 24. 

(2) Vortex expulsion into the external region is delayed. Coincidence of the center of the vortex with 
the conventional outer boundary r2 is confirmed by the following data: 6 = 0.12, 0.2, and 0.25 for n = 8, 16, 
and 24. 

(3) With increasing n for moderate R0 the second counterrotating vortex near the inner boundaries 
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appears sooner. For tt0 = 20, this process is related to 6 = 0.33, 0.225, and 0~18 for n = 8, 16, and 24. 
(4) It is difficult to find a criterion that determines vortex motion intensity because of the above- 

mentioned reconstruction of vortex configurations. Note that azimuthal overflow always increases downstream. 
EFttux M a c h  Number Effect .  The principal question here is that of the compressibility effect on such 

quasi-stationary disturbances. Changes in the crossflow distributions of the mean density p0 (r) and speed of 
sound a (r) entering the basic linearized equation (4) are known to be assqciated with efflux Mach number 
variation. Growth in M0 produces an increase in relative differences in distributions P0 (r) and gradients 
p~. As a consequence, the question arises of whether the disturbances considered are an integral part of 
compressible flows or are inherent in axisymmetric shear flows. Note that such disturbances have been found 
for plane mixing layers at least numerically [1, 3]. Novopashin and Perepelkin [11, 12] found experimentally 
the presence of azimuthal inhomogeneities in the density distribution in a transitional supersonic low-density 
jet. They associate the nature of this ingomogeneity with instability due to the spread in density, which is 
noted as the predominant factor. 

The present work included test calculations for M0 = 3 and 0.5. From relation (2) follow the 
distributions p0 (r) shown in Fig. 12 for ~ = 0.4 and M0 = 0.5, 1.5, and 3 (curves 2-4). Curve 1 shows 
the mean velocity U calculated from formula (1). As is seen, the relative difference in p0 for M0 = 0.5, 1.5, 
and 3 amounts to 5, 31, and 64.4%, respectively. However, such density gradients across 8 affect a i rather 
weakly (curves 2 and 3 for M0 = 0.5 and 3 in Fig. 2). For the it0 examined, the disturbances for large M0 values 
are more stable, which is also typical for traveling shear instability waves, i.e., compressibility is a stabilizing 
factor, and higher-speed jets have an elevated stability factor, which prevents growth of small disturbances in 
the mixing layer. Note that the wavenumbers a r increase only slightly with growing M0 (curve 3 for M0 = 3 
in Fig. 2). 

The wave velocity distributions for M0 = 3 for n = 16 agree well the distributions for M0 = 1.5 and 
are shown by dashed curves for ~ = 0.2 in Fig. 9 for tt0 = 5 (cf. curve 2). Higher velocity values are worthy 
of notice but their ratios remain principally the same. Growth in the wave density (dashed curves in Fig. 11) 
is noted in the same proportion. 

These distributions indicate that a Mach number increase has practically no effect on the vortex 
configuration patterns. 

The presence of terms in (4) related to compressibility causes the appearance of additional eigenvalues of 
a and eigensolutions of the form of (3) and (5), which also satisfy the boundary-value problem for eigenvalues. 
This peculiar feature is inherent in compressible boundary layers and is well systematized in [13] using traveling 
waves as an example. An additional branch of such a solution was found in the present work, and the wave 
shapes of the second mode were obtained. 

Curves 6 and 7 in Fig. 2 show the dependences a (R0) for waves with n = 16 for M0 = 1.5 and 3, 
respectively. The increment values are fairly close, but the disturbances for higher Mach numbers are found 
for the first time to be more unstable. The wavenumbers of these disturbances are higher than for the first 
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mode. 
The wavelength for M0 = 1.5 decreases by a factor of 4 and that for M0 = 3, by a factor of 1.5. The 

phase velocities for M0 = 1.5 are shown in Fig. 3 by curves 6 and 7 at R0 = 20 and 5, respectively. Note their 
conservatism compared with the first mode. 

The vortex configurations become more complex. As a rule, in the crossflow region of the mixing layer 
two counterrotating vortices are present immediately in the near-root region of the jet. Vortex core formation 
is observed, and the stable coexistence of the vortex pair takes place downstream for both high and low 6. 

A detailed analysis of all features of vortex evolution makes no sense for two reasons. First, since waves 
of the second mode have smaller increments, they are more stable and grow less intensely in space. Second, the 
existence of simple forms of disturbed motion, which are inherent in disturbances of the first mode, is more 
probable in flow under natural regulation. But information on the possible occurrence of such disturbances 
in free axisymmetric supersonic flow is certainly necessary for gasdynamicists, and experimenters should take 
into account this ambiguity in interpreting experimental results. 

Despite its purely descriptive character, the investigation performed can fill the vacuum that always 
accompanies the study of a new phenomenon, thus creating an information field that can be analyzed and 
refined, as necessary. Thus, the simulation performed confirmed the possibility of existence of streamwise 
vortex instability in free axisymmetric jet flow. 
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